Федеральное государственное бюджетное образовательное учреждение высшего образования

"Дальневосточный государственный университет путей сообщения" (ДВГУПС)

УТВЕРЖДАЮ

Зав.кафедрой (к911) Физика и теоретическая

механика

Пячин С,А., д.ф.-м.н., профессор

23.05.2025

РАБОЧАЯ ПРОГРАММА

дисциплины Физика

для специальности 08.05.02 Строительство, эксплуатация, восстановление и техническое прикрытие автомобильных дорог, мостов и тоннелей

Составитель(и): к.ф.-м.н., доцент, Антонычева Е.А.

Обсуждена на заседании кафедры: (к911) Физика и теоретическая механика

Протокол от 23.05.2025г. № 7

Обсуждена на заседании методической комиссии по родственным направлениям и специальностям: Протокол

Председатель МК РНС
2026 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2026-2027 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от 2026 г. № Зав. кафедрой Пячин С,А., д.фм.н., профессор
Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2027 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2027-2028 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от
Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2028 г.
2028 г. Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика Протокол от
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика Протокол от
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика Протокол от
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика Протокол от

Рабочая программа дисциплины Физика

разработана в соответствии с $\Phi\Gamma$ ОС, утвержденным приказом Министерства образования и науки Российской Федерации от 31.05.2017 № 484

Квалификация инженер

Форма обучения очная

ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость 10 ЗЕТ

Часов по учебному плану 360 Виды контроля в семестрах:

в том числе: экзамены (семестр) 3

контактная работа 122 зачёты (семестр) 2

самостоятельная работа 202 PГР 2 сем. (1), 3 сем. (1)

часов на контроль 36

Распределение часов дисциплины по семестрам (курсам)

Семестр (<Курс>.<Семес тр на курсе>) Недель	2 (1.2)		3 (2.1)		Итого	
Вид занятий	УП	РΠ	УП	РΠ	УП	РΠ
Лекции	32	32	16	16	48	48
Лабораторные	16	16	16	16	32	32
Практические	16	16	16	16	32	32
Контроль самостоятельно й работы	4	4	6	6	10	10
В том числе инт.	24	24	24	24	48	48
Итого ауд.	64	64	48	48	112	112
Контактная работа	68	68	54	54	122	122
Сам. работа	112	112	90	90	202	202
Часы на контроль			36	36	36	36
Итого	180	180	180	180	360	360

1. АННОТАЦИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Механика: Законы механики поступательного и вращательного движения материальной точки и твёрдого тела, законы сохранения механической энергии, импульса, момента импульса. Молекулярная физика и термодинамика: Основы молекулярно-кинетической теории. Термодинамика. Основы классической статистической физики. Электромагнетизм: Электростатика. Законы постоянного тока. Магнитное поле в вакууме и в веществе. Электромагнетизм. Колебания и волны: Свободные и вынужденные колебания. Волны. Электромагнитное поле. Оптика: Волновая оптика. Квантовая оптика. Квантовая механика. Квантово-механическое описание поведения микрочастиц. Элементы ядерной физики и физики элементарных частиц.

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
Код дис	циплины: Б1.О.10					
2.1	2.1 Требования к предварительной подготовке обучающегося:					
2.1.1	.1 Информатика					
2.2	.2 Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как					
	предшествующее:					
2.2.1	1 Теоретическая механика					
2.2.2	Сопротивление материалов					
2.2.3	Химия					

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-1: Способен применять математические и естественнонаучные знания, использовать методы математического анализа и моделирования, методы естественных наук при решении задач профессиональной деятельности

Знать:

Основные понятия и фундаментальные законы математики, физики; состав и структуру данных и информации, процессы их сбора, обработки и интерпретации; методы математического анализа и моделирования.

Уметь:

Использовать методы теоретического и экспериментального исследования объектов, процессов, явлений; применять математические методы и модели для обоснования принятия решений; использовать методы математического анализа и моделирования для обоснования принятия решений в профессиональной деятельности.

Владеть:

Умением объяснять сущность и анализировать физические явления, химические процессы; проводить эксперименты по заданной методике и анализировать их результаты; использовать физикоматематический аппарат для разработки простых математических моделей явлений, процессов и объектов при заданных допущениях и ограничениях

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ Код занятия Наименование разделов и тем /вид занятия/ Семестр / Курс Часов ции Компетенции Литература ракт. Примечание

	Раздел 1. Лекции						
1.1	Предмет физики. Роль физики в развитии техники и влияние техники на развитие физики. Механика: Законы механики поступательного и вращательного движения материальной точки и твёрдого тела. /Лек/	2	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	1	активное слушание
1.2	Динамика материальной точки. Законы сохранения механической энергии, импульса, момента импульса. /Лек/	2	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	1	активное слушание
1.3	Основы релятивистской механики, принцип относительности в механике, кинематика и динамика твердого тела, жидкостей и газов /Лек/	2	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	0	
1.4	Кинематика и динамика твердого тела, жидкостей и газов. Нормальное и касательное ускорения. /Лек/	2	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	0	
1.5	Реактивное движение. Работа и кинетическая энергия. /Лек/	2	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	1	дискуссии
1.6	Консервативные и неконсервативные силы. /Лек/	2	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	0	

1.7	Основное уравнение вращательного движения. Момент силы. Уравнение моментов. закон сохранения момента импульса. /Лек/	2	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	1	активное слушание
1.8	Молекулярная физика и термодинамика: Основы молекулярно-кинетической теории. Макроскопические состояния. Тепловое движение. Макроскопические параметры. /Лек/	2	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
1.9	Уравнение состояния идеального газа. Давление газа с точки зрения молекулярно-кинетической теории /Лек/	2	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	0	
1.10	Термодинамика. Основы классической статистической физики. Три начала термодинамики. /Лек/	2	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	1	активное слушание
1.11	Электростатика. Законы постоянного тока. /Лек/	2	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	0	
1.12	Уравнение Максвела в интегральной и дифференциальной формах, материальные уравнения, квазистационарные токи, принцип относительности в электродинамике /Лек/	2	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	1	активное слушание
1.13	Электрический заряд и напряженность электрического поля. Дискретность заряда. Закон Кулона, принцип суперпозиции. Поток вектора напряженности. Проводники и диэлектрики в электрическом поле. Поляризация диэлектриков. /Лек/	2	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	0	
1.14	Магнитное поле в вакууме и в веществе. Системы заряженных частиц, конденсированное состояние. Сила Ампера. /Лек/	2	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	0	
1.15	Закон полного тока для магнитного поля в вакууме и применение его к расчету магнитного поля тороида и длинного соленоида. Магнитный поток. /Лек/	2	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	1	активное слушание
1.16	Магнитное поле. Вектор магнитной индукции. Проводник с током в магнитном поле. /Лек/	2	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	1	активное слушание
1.17	Колебания и волны: Свободные и вынужденные колебания. Волны. /Лек/	3	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	1	активное слушание
1.18	Единый подход к колебаниям различной физической природы. Амплитуда, круговая частота, фаза гармонических колебаний. Маятник, груз на пружине. Свободные затухающие колебания. Коэффициент затухания, логарифмический декремент, добротность. Вынужденные колебания /Лек/	3	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	1	активное слушание
1.19	Кинематика волновых процессов, нормальные моды. Ток смещения. Система уравнений Максвелла в интегральной форме. /Лек/	3	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	1	активное слушание
1.20	Электромагнитное поле. Оптика: Волновая оптика. Физический смысл спектрального разложения. Интерференция волн /Лек/	3	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	1	дискуссии

1.21	Квантовая оптика. Квантовая механика.	3	2	ОПК-1	Л1.1	1	дискуссии
	Квантово-механическое описание поведения микрочастиц. Внешний фотоэффект, законы Столетова. Энергия и импульс световых квантов. /Лек/				Л1.2Л2.3 Э1 Э2 Э3		
1.22	Элементы Фурье-оптики Фарадеевская и максвелловская трактовки явления электромагнитной индукции. /Лек/	3	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	1	дискуссии
1.23	Тепловое равновесное излучение в полости. Абсолютно черное тело. Закон Кирхгофа. Закон Стефана-Больцмана, закон смещения Вина. Квантовая гипотеза и формула Планка. /Лек/	3	2	ОПК-1	Л1.1 Л1.2Л2.1 Л2.3 Э1 Э2 Э3	1	активное слушание
1.24	Элементы ядерной физики и физики элементарных частиц. /Лек/	3	2	ОПК-1	Л1.1 Л1.2Л2.1 Л2.3 Э1 Э2 Э3	1	активное слушание
	Раздел 2. Лабораторные работы						
2.1	Приемы и методы измерений в эксперименте. Краткая теория погрешностей. Измерительные инструменты. /Лаб/	2	2	ОПК-1	Л1.1 Л1.2Л2.3Л3. 5 Э1 Э2 Э3	2	работа в малых группах
2.2	Исследование центрального удара шаров /Лаб/	2	2	ОПК-1	Л1.1 Л1.2Л2.3Л3. 5 Э1 Э2 Э3	2	работа в малых группах
2.3	Законы динамики вращательного движения твердого тела /Лаб/	2	2	ОПК-1	Л1.1 Л1.2Л2.3Л3. 5 Э1 Э2 Э3	2	работа в малых группах
2.4	Определение коэффициента вязкости жидкости по методу Стокса /Лаб/	2	2	ОПК-1	Л1.1 Л1.2Л2.3Л3. 5 Э1 Э2 Э3	2	работа в малых группах
2.5	Изучение адиабатного процесса /Лаб/	2	2	ОПК-1	Л1.1 Л1.2Л2.3Л3. 5 Э1 Э2 Э3	2	работа в малых группах
2.6	Прием отчетов /Лаб/	2	2	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	2	дискуссии
2.7	Определение емкости конденсаторов /Лаб/	2	2	ОПК-1	Л1.1 Л1.2Л2.3Л3. 6 Э1 Э2 Э3	2	работа в малых группах
2.8	Источники постоянного тока /Лаб/	2	2	ОПК-1	Л1.1 Л1.2Л2.3Л3. 6 Э1 Э2 Э3	2	работа в малых группах
2.9	Изучение явления интерференции света по кольцам Ньютона /Лаб/	3	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 7 Э1 Э2 Э3	2	работа в малых группах
2.10	Определение длины световой волны дифракционными методами /Лаб/	3	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 7 Э1 Э2 Э3	2	работа в малых группах
2.11	Изучение законов поляризации чвета /Лаб/	3	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 2 Л3.7 Э1 Э2 Э3	2	дискуссии
2.12	Изучение дисперсии света.Изучения явления внешнего фотоэффекта /Лаб/	3	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 1 Л3.7 Э1 Э2 Э3	2	работа в малых группах

					-		
2.13	Законы теплового излучения. Свойства черных тел. /Лаб/	3	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. З Л3.7 Э1 Э2 Э3	2	работа в малых группах
2.14	Строение атома /Лаб/	3	2	ОПК-1	Л1.1 Л1.2Л2.1Л3. 4 Л3.7 Э1 Э2 Э3	2	работа в малых группах
2.15	Полупроводниковые приборы /Лаб/	3	2	ОПК-1	Л1.1 Л1.2Л2.2Л3. 4 Л3.7 Э1 Э2 Э3	2	работа в малых группах
2.16	«Изучение некоторых свойств оптического квантового генератора. /Лаб/	3	2	ОПК-1	Л1.1 Л1.2Л2.2Л3. 4 Л3.7 Э1 Э2 Э3	2	работа в малых группах
	Раздел 3. Практичекие занятия						
3.1	Уравнения движения, законы сохранения. /Пр/	2	4	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
3.2	Силы в механике. /Пр/	2	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
3.3	Кинематика и динамика твердого тела. /Пр/	2	2	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
3.4	Электростатика и магнетостатика в вакууме и веществе. /Пр/	2	4	ОПК-1	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Э1 Э2 Э3	0	
3.5	Статическая физика и термодинамика: три начала термодинамики, термодинамические функции состояния. /Пр/	2	4	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
3.6	Физический смысл спектрального разложения, кинематика волновых процессов. /Пр/	3	4	ОПК-1	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Э1 Э2 Э3	0	
3.7	Физика колебаний и волн. Интерференция и дифракция волн. /Пр/	3	4	ОПК-1	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2 Э3	0	
3.8	Энергетический спектр атомов и молекул. /Пр/	3	4	ОПК-1	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2 Э3	0	
3.9	Квантовые уравнения движения, операторы физических величин. /Пр/	3	4	ОПК-1	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Э1 Э2 Э3	0	
	Раздел 4. Самостоятельная работа						
4.1	изучение теоретического материала по учебной и учебнометодической литературе /Ср/	2	30	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	0	
4.2	отработка навыков решения задач по темам практических занятий /Cp/	2	20	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
4.3	выполнение и оформление расчетнографической работы, ее защита /Cp/	2	24	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
4.4	подготовка к промежуточному и итоговому тестированию по отдельным разделам и всему курсу, /Ср/	2	20	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	

					i		
4.5	подготовка к зачету и его сдача /Ср/	2	18	ОПК-1	Л1.1 Л1.2 Э1 Э2 Э3	0	
4.6	выполнение и оформление лабораторных работ /Ср/	3	12	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
4.7	изучение теоретического материала по учебной и учебнометодической литературе /Ср/	3	30	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
4.8	отработка навыков решения задач по темам практических занятий /Cp/	3	18	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
4.9	выполнение и оформление расчетнографической работы, ее защита /Ср/	3	30	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	
	Раздел 5. Контроль						
5.1	Подготовка к экзамену. /Экзамен/	3	36	ОПК-1	Л1.1 Л1.2Л2.3 Э1 Э2 Э3	0	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Размещены в приложении

	6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
	6.1. Рекомендуемая литература						
	6.1.1. Перечень основной литературы, необходимой для освоения дисциплины (модуля)						
	Авторы, составители	Заглавие	Издательство, год				
Л1.1	Трофимова Т.И.	Курс физики: учеб. пособие для вузов	Москва: Академия, 2016,				
Л1.2	Сивухин Д. В.	Общий курс физики	Москва: Физматлит, 2009, http://biblioclub.ru/index.php? page=book&id=82998				
	6.1.2. Перечень д	ополнительной литературы, необходимой для освоения диси					
	Авторы, составители	Заглавие	Издательство, год				
Л2.1	Ландсберг Г.С.	Оптика: Учеб. пособие для вузов	Москва: Физматлит, 2003,				
Л2.2	Максименко В.А.	Физика твердого тела: курс лекций	Хабаровск: Изд-во ДВГУПС, 2016,				
Л2.3	Чертов А.Г., Воробьев А.А.	Задачник по физике: учеб. пособие для вузов	Москва: Альянс, 2016,				
6.	1.3. Перечень учебно-м	иетодического обеспечения для самостоятельной работы обуч	ающихся по дисциплине				
	T .	(модулю)	**				
	Авторы, составители	Заглавие	Издательство, год				
Л3.1	Коваленко Л.Л., Пикуль О.Ю.	Изучение явления дисперсии света: Метод. указания на вып. лаб. работы	Хабаровск: Изд-во ДВГУПС, 2003,				
Л3.2	Коваленко Л.Л., Пикуль О.Ю.	Изучение законов поляризации света: метод. указания по выполнению лабораторной работы	Хабаровск: Изд-во ДВГУПС, 2008,				
Л3.3	Дейнекина Н.А., Коростелева И.А., Максименко В.А.	Изучение законов теплового излучения абсолютно черного тела: метод. указания	Хабаровск: Изд-во ДВГУПС, 2015,				
Л3.4	Антонычева Е.А., Сюй А.В.	Физика атома и твердого тела: сб. лабораторных работ	Хабаровск: Изд-во ДВГУПС, 2016,				
Л3.5	Литвинова М.Н.	Физика: Механика. Молекулярная физика и термодинамика: сб. лаб. работ	Хабаровск : Изд-во ДВГУПС, 2016,				
Л3.6	Литвинова М.Н.	Физика: Электричество. Электромагнетизм: сб. лаб. работ	Хабаровск : Изд-во ДВГУПС, 2016,				
Л3.7	Литвинова М.Н.	Физика: Оптика. Физика атома и твердого тела: сб. лаб. работ	Хабаровск : Изд-во ДВГУПС, 2016,				
6.	6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)						
Э1	Электронный каталог І	НТБ ДВГУПС	http://ntb.festu.khv.ru/				
Э2	Научная электронная б	библиотека eLIBRARY.RU	elibrary.ru				

ЭЗ Единая коллекция цифровых обоазовательных ресурсов

http://school-collection.edu.ru/

6.3 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

6.3.1 Перечень программного обеспечения

ABBYY FineReader 11 Corporate Edition - Программа для распознавания текста, договор СЛ-46

AutoDESK (AutoCAD, Revit, Inventor Professional, 3ds Max и др.) - САПР, бесплатно для ОУ

ПО CorelDRAW Graphics Suite X6 Education License - Графический пакет, контракт 214

Matlab Базовая конфигурация (Academic new Product Concurrent License в составе: (Matlab, Simulink, Partial Differential Equation Toolbox) - Математический пакет, контракт 410

Visio Pro 2007 - Векторный графический редактор, редактор диаграмм и блок-схем, лиц. 45525415

Windows XP - Операционная система, лиц. 46107380

WinRAR - Архиватор, лиц.LO9-2108, б/с

Антивирус Kaspersky Endpoint Security для бизнеса – Расширенный Russian Edition - Антивирусная защита, контракт 469 ДВГУПС

АСТ тест - Комплекс программ для создания банков тестовых заданий, организации и проведения сеансов тестирования, лиц. АСТ.РМ. А096. Л08018.04, дог. 372

Free Conference Call (свободная лицензия)

Zoom (свободная лицензия)

6.3.2 Перечень информационных справочных систем

Профессиональная база данных, информационно-справочная система Гарант - http://www.garant.ru

Профессиональная база данных, информационно-справочная система КонсультантПлюс - http://www.consultant.ru

7. O	7. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)					
Аудитория	Назначение	Оснащение				
423	Помещения для самостоятельной работы обучающихся. зал электронной информации	Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.				
3434	Учебная аудитория для проведения занятий лекционного типа.	комплект учебной мебели, тематические плакаты. Технические средства обучения: интерактивная доска, проектор, ноутбук. Лицензионное программное обеспечение: Windows 10 Pro для образовательных учреждений, версия 1909; Microsoft Office Pro Plus 2007; лиц. 168699; Антивирус Kaspersky Endpoint Security				
3431	Учебная аудитория для лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория "Электричество".	комплект учебной мебели, доска, тематические плакаты, однополярный высоковольтный источник напряжения, осциллограф, термопара, гальванометр, нагреватель, генератор звуковой частоты, источник тока, вольтметр, амперметр, установка для определения изменения энтропии ФПТ1-11.				
3435	Учебная аудитория для лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория "Электромагнетизм".	комплект учебной мебели, доска, тематические плакаты, модули "Изучение свойств сегнетоэлектриков" ФПЭ-02, "Изучение магнитного поля соленоида с помощью датчика Холла" ФПЭ-04, "Изучение гистерезиса ферромагнитных материалов" ФПЭ-07, "Исследование затухающих колебаний" ФПЭ-10, "Изучение вынужденных колебаний" ФПЭ-11, "Определение отношения заряда электрона к его массе методом магнетрона" ФПЭ-03, "Изучение релаксационных колебаний" ФПЭ-12, "Магазин сопротивления" ФПЭ-МС, "Магазин емкостей" ФПЭ-МЕ, "Источник питания" ФПЭ-ИП, осциллограф, генератор, мультиметр. Технические средства обучения: ПК. Лицензионное программное обеспечение: Office Pro Plus 2007, лиц. 45525415, Total Commander – LO9-2108 от 22.04.2009, Windows XP, лиц. 46107380.				
3535	Учебная аудитория для лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория "Оптика".	комплект учебной мебели, доска, тематические плакаты, установка "Изучение интерференционной схемы "колец Ньютона" ФПВ -05-2-2, установка "Получение и исследование поляризованного света" ФПВ-05-4-1, установка "Изучение дифракционной решетки и дисперсионной стеклянной призмы" ФПВ-05-3/5-1, установка для изучения абсолютно черного тела ФПК-11, установка для изучения внешнего фотоэффекта ФПК-10. Технические средства обучения: интерактивная доска.				
3537	Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.	комплект учебной мебели, доска, тематические плакаты, установка для определения длины пробега частиц в воздухе (определение длины пробега Альфа-частиц ФПК-03, установка для изучения р-п перехода ФПК-06, установка для изучения температурной зависимости электропроводности металлов и полупроводников ФПК-				

Аудитория	Назначение	Оснащение
		07, установка для изучения спектра атома водорода ФПК-09, монохроматор МУМ (для ФПК-09), установка для излучения космических лучей ФПК-01, установка для изучения энергетического спектра электронов (изучение Бета - радиоактивности) ФПК-05, установка для изучения и анализа свойств материалов с помощью сцинтилляционного счетчика (изучение Гамма — радиоактивных элементов) ФПК-13, установка для определения резонансного потенциала методом Франка и Герца ФПК-02.
3417	Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.	комплект учебной мебели, доска, тематические плакаты
01	Компьютерный класс для практических, лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также для самостоятельной работы. Кабинет информатики (компьютерные классы) *.	комплект учебной мебели. Технические средства обучения: компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС (Intel(R) Core(TM) i5-3570К СРU @ 3.40GHz, 4Gb, int Video, 1 Tb, DVD+RW, ЖК 19). Лицензионное программное обеспечение: Windows 10 Pro - MS DreamSpark 700594875, 7-Zip 16.02 (x64) (свободно распространяемое ПО), Autodesk 3ds Max 2019, Autodesk AutoCAD 2021, Autodesk AutoCAD Architecture 2021, Autodesk Inventor 2021, Autodesk Revit 2021- Для учебных заведений предоставляется бесплатно, Foxit Reader (свободно распространяемое ПО), MATLAB R2013b - Контракт 410 от 10.08.2015, Microsoft Office Профессиональный плюс 2007 - 43107380, Microsoft Visio профессиональный 2013 - MS DreamSpark 700594875, Microsoft Visual Studio Enterprise 2017- MS DreamSpark 700594875, Mozilla Firefox 99.0.1 (свободно распространяемое ПО), Opera Stable 38.0.2220.41 (свободно распространяемое ПО), PTC Mathcad Prime 3.0 - Контракт 410 от 10.08.2015, лиц. 3A1874498, КОМПАС-3D V19 - КАД-19-0909.ПЭВМ с возможностью выхода в интернет по расписанию Windows 10 Pro Контракт №235 ДВГУПС от 24.08.2021; Office Pro Plus 2019 Контракт №235 от 24.08.2021; Kaspersky Endpoint Security Контракт № 0322100012923000077 от 06.06.2023; КОМПАС-3D V19 Контракт № 995 от 09.10.2019; nanoCAD Номер лицензии: NC230P-81412 Срок действия: с 01.08.2023 по 31.07.2024;
201	Компьютерный класс для практических и лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также для самостоятельной работы.	Технические средства обучения: компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС, проектор. Лицензионное программное обеспечение: Windows 10 Pro - MS DreamSpark 700594875, 7-Zip 16.02 (x64) - Свободное ПО, Autodesk 3ds Max 2021, Autodesk AutoCAD 2021, Autodesk AutoCAD Architecture 2021, Autodesk Inventor 2021, Autodesk Revit 2021- Для учебных заведений предоставляется бесплатно, Foxit Reader-Свободное ПО, MATLAB R2013b - Контракт 410 от 10.08.2015, Microsoft Office Профессиональный плюс 2007 - 43107380, Microsoft Visio профессиональный 2013 - MS DreamSpark 700594875, Microsoft Visual Studio Enterprise 2017- MS DreamSpark 700594875, Mozilla Firefox 99.0.1 - Свободное ПО, Opera Stable 38.0.2220.41 - Свободное ПО, PTC Mathcad Prime 3.0 - Контракт 410 от 10.08.2015 лиц. 3A1874498, КОМПАС-3D V19 - КАД-19-0909, ACT-Тест лиц. ACT.PM.A096.Л08018.04, Договор № Л-128/21 от 01.06.2021 с 01 июля 2021 по 30 июня 2022. ПЭВМ с возможностью выхода в интернет по расписанию Windows 10 Pro Контракт №235 ДВГУПС от 24.08.2021; Office Pro Plus 2019 Контракт №235 от 24.08.2021; Kaspersky Endpoint Security Контракт № 0322100012923000077 от 06.06.2023; КОМПАС-3D V19 Контракт № 995 от 09.10.2019; nanoCAD Номер лицензии: NC230P-81412 Cpok действия: с 01.08.2023 по 31.07.2024;
3532	Учебная аудитория для проведения лабораторных и практических занятий. Лаборатория "Численное моделирование физических процессов".	Комплект учебно-лабораторного оборудования «Общая физика» в составе 10 лабораторных работ с применением технологии виртуальной реальности Лицензионное программное обеспечение: Windows 10 Pro для образовательных учреждений, версия 1909; Microsoft Office Pro Plus 2007; лиц. 168699; Антивирус Kaspersky Endpoint Security

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Методические рекомендации по работе над конспектом лекций во время и после проведения лекции.

В ходе лекционных занятий студентам необходимо вести конспектирование учебного материала, при этом запись лекций рекомендуется вести по возможности собственными формулировками. Желательно оставить в рабочих конспектах поля, на которых во внеаудиторное время можно сделать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Следует обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации по их применению, а также задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций. Над конспектами лекций надо систематическим работать: первый просмотр конспекта рекомендуется сделать вечером того дня, когда была прослушана лекции, затем вновь просмотреть конспект через 3-4 дня. В этом случае при небольших затратах времени студент основательно и глубоко овладевает материалом и к сессии приходит хорошо подготовленным. Работая над конспектом лекций, всегда следует использовать не только учебник, но и ту литературу, которую дополнительно рекомендовал лектор. Самостоятельная подготовка студента к следующей лекции должна состоять в первую очередь в перечитывании конспекта предыдущей лекции.

Методические рекомендации к лабораторным работам

Преподаватель, ведущий лабораторные работы, сообщает студентам: перечень лабораторных работ, последовательность их выполнения, рекомендуемые учебно-методические пособия, руководства и др.

Подготовка к экзамену.

При подготовке к зачету необходимо ориентироваться на конспекты лекций (при наличии лекционного курса по дисциплине), рабочую программу дисциплины, нормативную, учебную и рекомендуемую литературу. Основное в подготовке к экзамену - это повторение всего материала дисциплины, по которому необходимо сдавать экзамен. При подготовке к сдаче экзамена студент весь объем работы должен распределять равномерно по дням, отведенным для подготовки к экзамену, контролировать каждый день выполнение намеченной работы. В период подготовки к экзамену студент вновь обращается к уже изученному (пройденному) учебному материалу.

Дополнительные образовательные технологии.

Проведение учебного процесса может быть организовано с использованием ЭИОС университета и в цифровой среде (группы в социальных сетях, электронная почта, видеосвязь и др. платформы). Учебные занятия с применением ДОТ проходят в соответствии с утвержденным расписанием. Текущий контроль и промежуточная аттестация обучающихся проводится с применением ДОТ.

Целью лабораторных работ является закрепление знаний, полученных студентами при самостоятельном изучении дисциплины. При выполнении лабораторной работы необходимо руководствоваться литературой, предусмотренной рабочей программой по данной дисциплине и указанной преподавателем.В первом семестре выполняются 6 лабораторных работ по темам: "Механика", "Молекулярная физика", "Электростатика".

Методические рекомендации к лабораторным занятиям

Для рационального распределения времени обучающегося по разделам дисциплины и по видам самостоятельной работы студентам предоставляется календарный план дисциплины, а также учебно-методическое и информационное обеспечение, приведенное в данной рабочей программе.

В процессе обучения студенты должны усвоить научные основы предстоящей деятельности, научились управлять развитием своего мышления. С этой целью они должны освоить различные алгоритмы мышления. Алгоритмы развития мышления выстраиваются так, чтобы знания (закон, закономерность, определение, вывод, правило и т. д.) могли применяться при выполнении заданий (решении задач).

Преподаватель, ведущий лабораторные работы, сообщает студентам: перечень лабораторных работ, последовательность их выполнения, рекомендуемые учебно-методические пособия, руководства и др.

Подготовка к лабораторным работам осуществляется студентами самостоятельно заблаговременно. В процессе такой подготовки студент должен усвоить теоретический материал, относящийся к данной лабораторной работе, изучить и ясно представить себе содержание и порядок выполнения лабораторной работы, знать принципы действия и правила работы с измерительными приборами, методы измерений, особенности конструкции лабораторной установки и правила техники безопасности, знать ответы на приведенные в методическом руководстве контрольные вопросы, а также заготовить необходимые таблицы и схемы.

Выполнение лабораторных работ. В начале первого занятия подгруппы в лаборатории преподаватель знакомит студентов с лабораторными установками, измерительной аппаратурой, правилами поведения в лаборатории и правилами техники безопасности и оформляет журнал по технике безопасности, где должна быть подпись студента о прохождении инструктажа. Во время этого занятия преподаватель организует из студентов бригады по 2-3 человека в каждой, знакомит с последовательностью выполнения лабораторных работ и правилами оформления отчета по работе. Лабораторная работа рассчитана на два часа предварительной подготовки и оформления и на два часа выполнения в лаборатории, включая допуск к работе, выполнение эксперимента и обработку его результатов, защиту лабораторной работы в форме собеседования. Лабораторный отчет содержит цель работы, ответы на контрольные вопросы, схему установки, расчетные формулы, таблицу результатов измерений, расчеты и вывод. Для студентов, успешно справившихся с обязательным заданием, предусмотрено дополнительное задание экспериментального характера.

Защита лабораторных работ. Отчёт о проделанной лабораторной работе должен быть представлен к сдаче на следующем занятии и является необходимым, но не единственным условием защиты темы данной лабораторной работы. Защита

производится по каждой работе в отдельности в виде индивидуального собеседования с каждым студентом по теоретической и практической частям выполненной работы, а также по данным и результатам оформленного отчета. Ответы на поставленные вопросы студент дает в устной или письменной форме.

Студенты допускаются к сдаче экзамена при условии выполнения и защиты лабораторных работ, предусмотренным планом.

Во втором семестре выполняются лабораторные работы по теме "Магнетизм", "Волновая и квантовая оптика", "Атомная физика". Заготовка для лабораторной работы выполняется предварительно в домашних условиях и содержит цель работы, приборы и принадлежности, краткую теоретическую часть, расчетные формулы и таблицы по теме лабораторной работы. Защита лабораторной работы проводится на лабораторном занятии в форме собеседования с преподавателем.

Методические рекомендации к практическим занятиям

В течение практического занятия студенту необходимо выполнить задания, выданные преподавателем, для этого при подготовке к практическим занятиям студентам необходимо изучить основную литературу, ознакомиться с дополнительной литературой с учетом рекомендаций преподавателя и требований учебной программы. Проведение учебного процесса может быть организовано с использованием ЭИОС университета и в цифровой среде (группы в социальных сетях, электронная почта, видеосвязь и др. платформы). Учебные занятия с применением ДОТ проходят в соответствии с утвержденным расписанием. Текущий контроль и промежуточная аттестация обучающихся проводится с применением ДОТ.

Методические рекомендации к практическим занятиям

Проведение практических занятий. В течение практического занятия студенту необходимо выполнить задания, выданные преподавателем, для этого при подготовке к практическим занятиям студентам необходимо изучить основную литературу, ознакомиться с дополнительной литературой с учетом рекомендаций преподавателя и требований учебной программы.

Методические рекомендации по выполнению расчетно-графической работы

- 1. Приступая к решению задачи, внимательно прочитайте условие задачи, попытайтесь сначала представить физический процесс (явление) о котором идет речь и понять постановку вопроса. Установите, какие физические величины известны. Недостающие данные, необходимые для решения задачи, можно найти в справочных таблицах 2. Обязательно сделайте схематический рисунок, поясняющий сущность физического процесса (явления), это во многих случаях значительно облегчит как поиск решения, так и само решение.
- 3. Старайтесь решить задачу в общем виде (т. е. в буквенных обозначениях), чтобы искомая величина была выражена через заданные величины. Решение в общем виде позволяет установить определенную закономерность, показывающую, как зависит искомая величина от заданных величин.
- 4. Получив решение в общем виде, проверьте его размерность. Неверная размерность указывает на ошибочность решения. Если возможно, исследуйте поведение решения в предельных частных случаях.
- 5. При расчетах руководствуйтесь правилами действий с приближенными числами. В частности, в полученном значении вычисленной величины нужно сохранить последним тот знак, единица которого еще превышает погрешность этой величины. Все следующие цифры надо отбросить.
- 6. Получив числовой результат, оцените его правдоподобность.

Такая оценка может в ряде случаев обнаружить ошибочность полученного результата.

Требования к оформлению РГР

При оформлении типового расчета (домашнего задания) необходимо соблюдать следующие требования:

- номер задачи типового расчета назначается преподавателем;
- типовой расчет выполняется в отдельной тетради;
- титульный лист типового расчета оформляется по образцу титульного листа к лабораторной работе;
- условие задачи в типовом расчете переписывается полностью;
- решение задач начинается с краткой записи условия, где все физические величины записываются в системе СИ;
- решение задачи должно сопровождаться схематическим рисунком с указанными векторными величинами и краткими, но исчерпывающими пояснениями.

Самостоятельная работа студентов Основные задачи внеаудиторной самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений обучающихся;
- углубление и расширение теоретических знаний;
- развитие познавательных способностей и активности обучающихся;
- формирование самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развитие универсальных учебных действий с использованием информационно-коммуникационных технологий
- формирование общепрофессиональных компетенций

Методические рекомендации по подготовке презентации

Создание материалов-презентаций – это вид самостоятельной работы по созданию наглядных информационных пособий, выполненных с помощью мультимедийной компьютерной программы MicrosoftPowerPoint.

Презентация (от английского слова - представление) – это набор цветных картинок-слайдов на определенную тему, который хранится в файле специального формата.

Этот вид работы потребует от вас сбор, систематизацию, переработку информации, оформлению её в виде подборки материалов, кратко отражающих основные вопросы изучаемой темы, в электронном виде. То есть создание материаловпрезентаций расширит ваши методы и средства обработки и представления учебной информации, способствует формированию навыков работы на компьютере.

Требования к содержанию презентации

- соответствие заявленной теме и целям;
- наличие логической связи между рассматриваемыми явлениями и показателями;
- представление информации в виде картосхем, графиков и диаграмм;
- отсутствие грамматических и стилистических ошибок;
- формулировка вывода по результатам проведенной работы.

Презентация должна включать:

- Название темы.
- Содержание.
- Список использованных источников.

Презентация предполагает сочетание информации различных типов: текста, графических изображений, музыкальных и звуковых эффектов, анимации и видеофрагментов. Поэтому необходимо учитывать специфику комбинирования фрагментов информации различных типов. Рассмотрим рекомендации по оформлению и представлению на экране материалов различного вида.

Оформление текстовой информации

- размер шрифта: 28–54 пункта (заголовок), 24–36 пунктов (обычный текст);
- цвет шрифта и цвет фона должны контрастировать;
- тип шрифта: для основного текста гладкий шрифт без засечек (Times New Roman ,Arial, Tahoma, Verdana), для заголовка можно использовать декоративный шрифт, если он хорошо читаем;
- курсив, подчеркивание, жирный шрифт, прописные буквы рекомендуется использовать только для смыслового выделения фрагмента текста.

Оформление графической информации

- желательно избегать в презентации рисунков, не несущих смысловой нагрузки, если они не являются частью стилевого оформления;
- цвет графических изображений не должен резко контрастировать с общим стилевым оформлением слайда;
- иллюстрации рекомендуется сопровождать пояснительным текстом;
- если графическое изображение используется в качестве фона, то текст на этом фоне должен быть хорошо читаем.

Вам необходимо:

- изучить материалы темы, выделяя главное и второстепенное;
- установить логическую связь между элементами темы;
- представить характеристику элементов в краткой форме;
- выбрать опорные сигналы для акцентирования главной

информации и отобразить в структуре работы;

• оформить работу и предоставить к установленному сроку.

После создания презентации, ее оформления, необходимо отрепетировать ее показ и свое выступление, проверить, как будет выглядеть презентация в целом (на экране компьютера или проекционном экране), насколько скоро и адекватно она воспринимается из разных мест аудитории, при разном освещении, шумовом сопровождении, в обстановке, максимально приближенной к реальным условиям выступления.

Виды самостоятельной работы студентов и их состав

- изучение теоретического материала по лекциям, учебной и учебно-методической литературе;
- отработка навыков решения задач по темам лекций, практических и лабораторных занятий;
- оформление отчетов о выполненных лабораторных работах и подготовка к их защите;
- курсовая работа;
- подготовка к экзамену.

Оценочные материалы при формировании рабочих программ дисциплин (модулей)

Специальность 08.05.02 Строительство, эксплуатация, восстановление и техническое прикрытие автомобильных дорог, мостов и тоннелей

Специализация: Строительство (реконструкция), эксплуатация и техническое прикрытие автомобильных дорог

Дисциплина: Физика

Формируемые компетенции:

1. Описание показателей, критериев и шкал оценивания компетенций.

Показатели и критерии оценивания компетенций

Объект	Уровни сформированности	Критерий оценивания
оценки	компетенций	результатов обучения
Обучающийся	Низкий уровень Пороговый уровень Повышенный уровень Высокий уровень	Уровень результатов обучения не ниже порогового

Шкалы оценивания компетенций при сдаче экзамена или зачета с оценкой

Достигнутый	Характеристика уровня сформированности	Шкала оценивания
уровень	компетенций	Экзамен или зачет с
результата		оценкой
обучения		,
Низкий	Обучающийся:	Неудовлетворительно
уровень	-обнаружил пробелы в знаниях основного учебно-программного	
	материала;	
	-допустил принципиальные ошибки в выполнении заданий,	
	предусмотренных программой;	
	-не может продолжить обучение или приступить к	
	профессиональной деятельности по окончании программы без	
	дополнительных занятий по соответствующей дисциплине.	
Пороговый	Обучающийся:	Удовлетворительно
уровень	-обнаружил знание основного учебно-программного материала в	
	объёме, необходимом для дальнейшей учебной и предстоящей	
	профессиональной деятельности;	
	-справляется с выполнением заданий, предусмотренных	
	программой;	
	-знаком с основной литературой, рекомендованной рабочей	
	программой дисциплины;	
	-допустил неточности в ответе на вопросы и при выполнении	
	заданий по учебно-программному материалу, но обладает	
	необходимыми знаниями для их устранения под руководством	
	преподавателя.	
Повышенный	Обучающийся:	Хорошо
уровень	- обнаружил полное знание учебно-программного материала;	
	-успешно выполнил задания, предусмотренные программой;	
	-усвоил основную литературу, рекомендованную рабочей	
	программой дисциплины;	
	-показал систематический характер знаний учебно-программного	
	материала;	
	-способен к самостоятельному пополнению знаний по учебно-	
	программному материалу и обновлению в ходе дальнейшей	
	учебной работы и профессиональной деятельности.	
	1 1	

Высокий	Обучающийся:	Отлично
уровень	-обнаружил всесторонние, систематические и глубокие знания учебно-программного материала; -умеет свободно выполнять задания, предусмотренные программой;	
	-ознакомился с дополнительной литературой; -усвоил взаимосвязь основных понятий дисциплин и их значение для приобретения профессии; -проявил творческие способности в понимании учебнопрограммного материала.	

Шкалы оценивания компетенций при сдаче зачета

Достигнуты й уровень результата обучения	Характеристика уровня сформированности компетенций	Шкала оценивания
Пороговый уровень	Обучающийся: - обнаружил на зачете всесторонние, систематические и глубокие знания учебно-программного материала; - допустил небольшие упущения в ответах на вопросы, существенным образом не снижающие их качество; - допустил существенное упущение в ответе на один из вопросов, которое за тем было устранено студентом с помощью уточняющих вопросов; - допустил существенное упущение в ответах на вопросы, часть из которых была устранена студентом с помощью уточняющих вопросов	Зачтено
Низкий уровень	Обучающийся: - допустил существенные упущения при ответах на все вопросы преподавателя; - обнаружил пробелы более чем 50% в знаниях основного учебнопрограммного материала	Не зачтено

Описание шкал оценивания

Компетенции обучающегося оценивается следующим образом:

Планируемый уровень	Содержание шкалы оценивания достигнутого уровня результата обучения				
результатов освоения	Неудовлетворительн	Удовлетворительно	Хорошо	Отлично	
Своения	Не зачтено	Зачтено	Зачтено	Зачтено	
Знать	Неспособность	Обучающийся	Обучающийся	Обучающийся	
	обучающегося	способен	демонстрирует	демонстрирует	
	самостоятельно	самостоятельно	способность к	способность к	
	продемонстрировать	продемонстриро-вать	самостоятельному	самостоятельно-му	
	наличие знаний при	наличие знаний при	применению	применению знаний в	
	решении заданий,	решении заданий,	знаний при	выборе способа	
	которые были	которые были	решении заданий,	решения неизвестных	
	представлены	представлены	аналогичных тем,	или нестандартных	
	преподавателем	преподавателем	которые представлял	заданий и при	
	вместе с образцом	вместе с	преподаватель,	консультативной	
	их решения.	образцом их решения.	и при его	поддержке в части	
			консультативной	межлисшиппинарных	

Уметь	Отсутствие у	Обучающийся	Обучающийся	Обучающийся
	обучающегося	демонстрирует	продемонстрирует	демонстрирует
	самостоятельности	самостоятельность в	самостоятельное	самостоятельное
	в применении	применении умений	применение умений	применение умений
	умений по	решения учебных	решения заданий,	решения неизвестных
	использованию	заданий в полном	аналогичных тем,	или нестандартных
	методов освоения	соответствии с	которые представлял	заданий и при
	учебной	образцом,	преподаватель,	консультативной
	дисциплины.	данным	и при его	поддержке
		преподавателем.	консультативной	преподавателя в части
			поддержке в части	междисциплинарных
			современных	связей.
			проблем.	
Владеть	Неспособность	Обучающийся	Обучающийся	Обучающийся
	самостоятельно	демонстрирует	демонстрирует	демонстрирует
	проявить навык	самостоятельность в	самостоятельное	самостоятельное
	решения	применении навыка	применение навыка	применение навыка
	поставленной	по заданиям,	решения заданий,	решения неизвестных
	задачи по	решение которых	аналогичных тем,	или нестандартных
	стандартному	было показано	которые представлял	заданий и при
	образцу повторно.	преподавателем.	преподаватель,	консультативной
			и при его	поддержке
			консультативной	преподавателя в части
			поддержке в части	междисциплинарных
			современных	связей.
			проблем.	

2. Перечень вопросов и задач к экзаменам, зачетам, курсовому проектированию, лабораторным занятиям. Образец экзаменационного билета

Примерный перечень вопросов к лабораторным работам: Компетенция ОПК-1:

2 семестр:

- 1. Что такое измерение? Какие виды измерений вы знаете? Чем они характеризуются?
- 2. Что такое погрешность (ошибка) измерения? Какие виды погрешностей существуют? Причины их возникновения.
 - 3. Что такое абсолютная и относительная ошибка? В каких единицах они измеряются?
 - 4. Алгоритм вычисления ошибок при прямых и косвенных измерениях.
 - 5. Правила измерения длины с помощью штангенциркуля и микрометра.
 - 6. Понятие силы, массы.
 - 7. 2й закон Ньютона и его формулировки.
 - 8. Что такое консервативная и диссипативная системы? Понятие потенциального поля.
 - 9. Сформулировать закон сохранения механической энергии.
 - 10. Средняя сила удара шарика о рельс (вывод).
 - 11. Что такое удар? Упругий и неупругий удары.
 - 12. Коэффициент восстановления.
 - 13. Закон сохранения импульса и закон сохранения энергии для абсолютно упругого удара.
 - 14. Закон сохранения импульса и закон сохранения энергии для абсолютно неупругого удара.
 - 15. Скорость шарика при прохождении положения равновесия (вывод).
 - 16. Момент инерции материальной точки, твердого тела.
 - 17. Плечо силы. Момент силы.
 - 18. Основной закон динамики вращательного движения твердого тела.
 - 19. Кинетическая энергия и работа при вращательном движении.
 - 20. Теорема Штейнера.
 - 21. Идеальный газ. Уравнение состояния идеального газа.
 - 22. Внутренняя энергия, работа идеального газа.
 - 23. Первое начало термодинамики. Применить его к изопроцессам.
 - 24. Адиабатический процесс (І-ое начало, уравнение Пуассона).
 - 25. Показатель адиабаты. Число степеней свободы i, теплоемкости Сри CV.
 - 26. Явления переноса.

- 27. Природа вязкости. Градиент скорости.
- 28. Уравнение вязкости (закон Ньютона).
- 29. Коэффициент вязкости (вывод расчетной формулы).
- 30. Число Рейнольдса. Время релаксации.
- 31. Механические бегущие волны: поперечные и продольные.
- 32. Уравнение бегущей волны.
- 33. Скорость поперечной и продольной волн.
- 34. Связь длины волны, скорости и частоты бегущей волны.
- 35. Стоячие волны, их принципиальное отличие от всех других видов волн.
- 36. Уравнение стоячей волны. Пучности и узлы.
- 37. Проводники в электрическом поле.
- 38. Электроемкость проводника.
- 39. Конденсатор. Электроемкость плоского конденсатора (вывод).
- 40. Электроемкости параллельно и последовательно соединенных конденсаторов.
- 41. Электрическая схема по измерению емкости конденсатора (назначение всех элементов).
- 42. Характеристики электрического тока, закон Ома в дифференциальной форме.
- 43. Замкнутая электрическая цепь. Закон Ома в интегральной форме.
- 44. Закон Джоуля-Ленца в интегральной форме.
- 45. Физический смысл ЭДС.
- 46. Полезная мощность, ее зависимость от сопротивления R. Условие максимума.
- 47. Напряженность поля. Потенциал. Связь между ними.
- 48. Силовые и эквипотенциальные поверхности поля точечного заряда.
- 49. Основные элементы электронно-лучевой трубки (чертеж).
- 50. Скорость электронов, прошедших второй анод. Вывод формулы.
- 51. Траектория электронов в пространстве отклоняющих пластин.
- 52. Диполь. Плечо диполя. Электрический момент диполя.
- 53. Явление поляризации диэлектрика. Вектор поляризации.
- 54. Физический смысл диэлектрической проницаемости вещества.
- 55. Сегнетоэлектрики, их отличия от остальных диэлектриков.
- 56. Гистерезис. Показать на петле гистерезиса Дост. (или Рост.) и Екоэрц.
- 57. Что такое магнетрон? Его схема (вид сверху).
- 58. Показать на схеме магнетрона направление векторов:
- а. v скорость электрона,
- b. В вектор индукции для любого направления тока,
- 60. Изобразить траекторию электронов в магнетроне при различных значениях токов в соленоиде.
 - 61. Закон Ампера.
 - 62. Сила Лоренца.
- 63. Вектор магнитной индукции, напряженность магнитного поля, магнитная проницаемость среды.
 - 64. Закон Био-Савара-Лапласа.
- 65. Вектор индукции В магнитного поля бесконечно длинного прямолинейного проводника с током I (формула).
 - 66. Вектор индукции В магнитного поля для отрезка проводника с током (формула).
 - 67. Вектор индукции В магнитного поля в центре кругового тока (формула).
 - 68. Явление электромагнитной индукции. Определение. Правило Ленца.
 - 69. Закон Фарадея, его вывод.
- 70. Токи при замыкании и размыкании цепи. Явление самоиндукции, ЭДС самоиндукции (формула).
 - 71. Индуктивность катушки. Взаимная индуктивность катушек.
- 72. Вихревые токи. Вредны они или полезны? Почему сердечники трансформаторов не делают сплошными?

3 семестр:

- 73. Физика колебаний и волн: гармонический и ангармонический осциллятор.
- 74. Какие световые волны являются когерентными?
- 75. Интерференция и дифракция волн, элементы Фурье-оптики.
- 76. Геометрическая и оптическая длина пути, оптическая разность хода, условия максимума и минимума.
 - 77. Установка для «колец Ньютона», ход лучей в ней.
 - 78. Практическое применение явления интерференции света.

- 78. Дифракция света, определение.
- 79. Принцип Гюйгенса Френеля.
- 80. Фронт волны точечного и бесконечно удаленного источников, рисунок.
- 81. Метод зон Френеля для круглого отверстия. Условия максимума и минимума в точке М экрана.
 - 82. Метод зон для щели, условия максимума и минимума.
 - 83. Внешний фотоэффект, определение.
 - 84. Уравнение фотоэффекта.
 - 85. Законы фотоэффекта.
 - 86. Устройство фотоэлемента.
 - 87. Принцип работы фотоумножителя.
 - 88. Модели атома Томсона, Резерфорда, Бора.
 - 89. Постулаты Бора и происхождение линейчатых спектров.
- 90. Имеется ли какая-либо связь между частотой обращения электрона вокруг ядра атома водорода и частотой его излучения?
 - 91. Вывести формулы для определения скорости электрона на пй орбите и радиуса пй орбиты.
- 92. Охарактеризовать изменения кинетической, потенциальной и полной энергий электрона в атоме при его удалении от ядра.
 - 93. Что такое валентная зона, запрещенная зона и зона проводимости?
 - 94. Какие полупроводники называются собственными, а какие примесными?
- 95. От чего зависит концентрация свободных носителей заряда в п-полупроводнике и в р-полупроводнике?
 - 96. Особенности температурной зависимости электропроводности полупроводников.
 - 97. Особенности температурной зависимости электропроводности металлов.
 - 98. Поглощение, спонтанное и вынужденное излучения.
 - 99. Основные компоненты оптического квантового генератора. Охарактеризовать их.
 - 100. Какое состояние среды называется инверсным?
 - 101. Почему смесь гелия и неона является хорошей активной средой для газового ОКГ?

Отличия лазерного излучения от любого другого излучения.

Примерное содержание расчетно-графических работы РГР № 1:

Компетенция ОПК-1:

Второй семестр:

- 1 задача: Камень брошен вертикально вверх с начальной скоростью . По истечении, какого времени находится на высоте ? Найти скорость камня на этой высоте. Сопротивлением воздуха пренебречь. Принять .
- 2 задача: Звуковые колебания, имеющие частоту и амплитуду , распространяются в упругой среде. Длина волны . Найти: 1) скорость распространения волн; 2) максимальную скорость частиц среды.
- 3 задача: Диск радиусом вращается согласно уравнению , где , , . Определить тангенциальное, нормальное и полное а, ускорения точек на окружности диска для момента времени .
- 4. задача: Плотность газа ρ при давлении p=96 кПа и темпе¬ратуре $t=0^{\circ}$ С равна 1,35 г/л. Найти молярную массу М газа.
- 5. задача: Определить давления p1 и p2 газа, содержащего N=109 молекул и имеющего объем V=1 см3, при температурах T1=3 K и T2=1000 K.
- 6. задача: К батарее с ЭДС ε = 300 В включены два плоских конденсатора емкостями C1 = $2\pi\Phi$ и C2 = $3\pi\Phi$. Определить заряд Q и напряжение U на пластинках конденсаторов при последовательном и параллельном соединениях.
- 7. задача: Два одинаковых заряженных шара находятся на расстоянии . Сила отталкиванья шаров . После того как шары привели в соприкосновение и удалили друг от друга на прежнее расстояние, сила отталкиванья возросла и стала равной . Вычислить заряды q1 и q2, которые были на шарах до их соприкосновения. Диаметр шаров считать много меньшим расстояния между ними.
- 8. задача: Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом . Вычислить магнитный момент эквивалентного кругового тока и механический момент М, действующий на круговой ток, если атом помещен в магнитное поле, линии индукции которого параллельны плоскости орбиты электрона. Магнитная индукция В поля равна 0,1Тл.
- 9. задача: Электрическое поле создано двумя точечными зарядами и , находящимися на расстоянии друг от друга. Определить напряженность поля в точке, удаленной от первого заряда на и от второго на .

Примерное содержание расчетно-графических работы РГР № 2: Компетенция ОПК-1:

Третий семестр:

- 1 задача: Определить показатель преломления диэлектрической пластинки, зная угол падения и угол преломления падающего луча.
- 2. задача: Используя длину волны ртутно-кварцевого излучения и ее показатель преломления построить дисперсионную кривую. Определить вид дисперсии.
- 3. задача: Рассчитать угол Брюстера и угол полной поляризации при переходе красного света из воздуха в воду.
- 4. задача: Оптическая разность хода \Box двух интерферирующих волн монохроматического света равна 0,3 λ . Определить разность фаз \Box ϕ .
- 5. задача: Определить энергию фотона є, соответствующего второй линии в первой инфракрасной серии (серии Пашена) атома водорода.
- 6. задача: Какую часть массы ядра нейтрального атома плутония составляет масса его электронной оболочки?
- 7. задача: Радиус второго темного кольца Ньютона в отраженном свете r2=0,4 мм. Определить радиус R кривизны плосковыпуклой линзы, взятой для опыта, если она освещается монохроматическим светом с длиной волны $\lambda=0,64$ мкм.
- 8. задача: Определить энергию є фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на основной.
 - 9. задача: Определить первый потенциал возбуждения ф1 водорода.

Примерные вопросы по защите расчетно-графических работ: Компетенция ОПК-1:

- 1. Какие основные законы и явления используются в данной задаче?
- 2. Каков физический смысл задачи?
- 3. Рассказать ход решения задачи.
- 4. Почему при решении задачи используется определенная формула?
- 5. Как выбирается формула для решения задачи?
- 6. Может ли быть другое решение задачи?
- 7. Можно ли интегральное решение задачи заменить дифференциальным?
- 8. Какие модели используются при решении задачи?
- 9. Какие допущения сделаны при решении задачи?
- 10. Какая размерность применена при решении задачи?
- 11. Можно ли решить задачу в другой системе, например СГС?

Примерные практические задачи (задания) и ситуации Компетенция ОПК-1:

2 семестр:

- 1. Камень брошен вертикально вверх с начальной скоростью . По истечении, какого времени находится на высоте ? Найти скорость камня на этой высоте. Сопротивлением воздуха пренебречь. Принять .
- 2. По дуге окружности радиусом движется точка. В некоторый момент времени нормальное ускорение точки ; в этот момент векторы полного и нормального ускорений образуют угол . Найти скорость и тангенциальное ускорение точки.
- 3. Тело, брошенное с башни в горизонтальном направлении со скоростью , упало на землю на расстоянии S (от основании башни) вдвое большем высоты h башни. Найти высоту башни.
- 4. Диск радиусом вращается согласно уравнению , где , , . Определить тангенциальное, нормальное и полное а, ускорения точек на окружности диска для момента времени .
- 5. Винт аэросаней вращается с частотой . Скорость поступательного движения аэросаней равна . С какой скоростью и движется один из концов винта, если радиус винта равен .
- 6. Определить давления p1 и p2 газа, содержащего N=109 молекул и имеющего объем V=1 см3, при температурах T1=3 K и T2=1000 K.
- 7. Какой объем V занимает смесь азота массой m1 = 1 кг и гелия массой m2 = 1 кг при нормальных условиях?
- 8. В баллоне вместимостью V = 15 л находится смесь, содержащая m1 = 10 г водорода, m2 = 64 г водяного пара и m3 = 60 г оксида углерода. Температура смеси $t = 27^{\circ}$. Определить давление.
- 9. Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы получить скорость v = 8 Mm/c?
- 10. Заряд равномерно распределен по бесконечной плоскости с поверхностной плотностью $\sigma = 10$ нКл/м2. Определить разность потенциалов двух точек поля, одна из которых находится на плоскости, а другая удалена от нее на расстояние a = 10 см.

- 11. К батарее с ЭДС ϵ = 300 В включены два плоских конденсатора емкостями C1 = 2пФ и C2 = 3пФ. Определить заряд Q и напряжение U на пластинках конденсаторов при последовательном и параллельном соединениях.
- 12. На концах медного провода длиной l = 5 м поддерживается напряжение U = 1 В. Определить плотность тока j в проводе.
- 13. По тонкому проводнику, изогнутому в виде пра \neg вильного шестиугольника со стороной а =10 см, идет ток I = 20 А. Определить магнитную индукцию В в центре шестиугольника.
- 14. Обмотка соленоида содержит два слоя, плотно при \neg легающих друг к другу витков провода диаметром d=0,2 мм. Определить магнитную индукцию B на оси соленоида, если по проводу идет ток I=0,5 A.

Компетенция ОПК-1:

3 семестр:

- 1. Протон влетел в магнитное поле перпендикулярно линиям индукции и описал дугу радиусом R = 10 см. Определить скорость υ протона, если магнитная индукция B = 1 Тл.
- 3 . На пластину с щелью, ширина которой a=0.05 мм, падает нормально монохроматический свет с длиной вол¬ны $\lambda=0.7$ мкм. Определить угол ϕ отклонения лучей, соответствующий первому дифракционному максимуму.
- 4. Дифракционная решетка, освещенная нормально падающим монохроматическим светом, отклоняет спектр третьего порядка на угол $\phi 1 = 30^{\circ}$. На какой угол $\phi 2$ отклоняет она спектр четвертого порядка?
- 5. Угол преломления луча в жидкости i2 = 35°. Опре¬делить показатель преломления п жидкости, если известно, что отраженный пучок света максимально поляризован.
- 6. Вычислить длину волны де Бройля λ для электрона, прошедшего ускоряющую разность потенциалов U = 22,5 B.
- 7. Вычислить длину волны де Бройля λ , для протона, движущегося со скоростью $\upsilon = 0.6$ с (с скорость света в вакууме). Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию Ттіпэлектрона, движущегося внутри сферической области диаметром d = 0.1 нм.

Примерный перечень вопросов к зачету:

Компетенция ОПК-1:

2 семестр:

Механика

- 1. Материальная точка. Системы отсчета. Кинематика поступательного движения. Траектория. Путь. Средняя скорость. Мгновенная скорость.
- 2. Среднее ускорение. Мгновенное ускорение. Касательное и нормальное ускорение. Равномерное и равноускоренное движение.
 - 3. Движение тела, брошенного под углом к горизонту.
- 4. Виды взаимодействий в природе. Характеристики некоторых сил: сила тяжести и вес тела, силы трения и упругости.
 - 5. Первый закон Ньютона. Инерциальные системы отсчета. Примеры.
- 6. Второй закон Ньютона. Дифференциальная форма второго закона Ньютона. Третий закон Ньютона. Границы применимости законов Ньютона. Сложение сил.
- 7. Определение механической работы (постоянной и меняющейся) силы. Графическое представление работы.
 - 8. Кинетическая энергия. Связь кинетической энергии с работой. Примеры.
- 9. Консервативные силы. Потенциальное поле. Потенциальная энергия и ее связь с работой. Потенциальная энергия тела в поле тяжести Земли. Энергия сжатой пружины.
 - 10. Механическая энергия. Закон сохранения механической энергии. Примеры.
- 11. Кинематика вращательного движения. Угловое перемещение, угловая скорость и угловое ускорение. Векторный характер величин. Частота и период вращения.
- 12. Определение момента силы. Плечо силы. Основное уравнение динамики вращательного движения.
- 13. Момент инерции абсолютно твердого тела (вычисления моментов инерции). Физический смысл момента инерции. Теорема Штейнера.
 - 14. Определение момента импульса. Закон сохранения момента импульса. Примеры.
 - 15. Кинетическая энергия вращающегося тела. Работа при вращательном движении. Энергия

катящегося цилиндра.

- 16. Постулаты Эйнштейна. Преобразования Лоренца. Следствия из преобразований Лоренца. Одновременность.
 - 17. Следствия из преобразований Лоренца. Лоренцево сокращение длины.
 - 18. Следствия из преобразований Лоренца. Замедление времени. Интервал.
 - 19. Релятивистская динамика. Релятивистская масса. Взаимосвязь энергии и массы.

Термодинамика

- 20. Основное уравнение молекулярно-кинетической теории идеального газа.
- 21. Идеальный газ. Газовые законы. Уравнение Менделеева-Клапейрона.
- 22. Закон Максвелла для распределения молекул по скоростям.
- 23. Барометрическая формула. Распределение Больцмана.
- 24. Число степеней свободы. Закон Больцмана о равнораспределении энергии по степеням свободы.
- 25. Внутренняя энергия идеального газа. Работа газа при расширении. Работа газа при различных процессах.
- 26. Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам.
 - 27. Теплоемкость газов. Уравнение Майера.
 - 28. Круговой процесс. Обратимый, необратимый процесс. Цикл Карно и его КПД.
- 29. Статистические закономерности распределения молекул газа по объему. Энтропия и ее статистическое толкование. Изменение энтропии. Расчет изменения энтропии при различных процессах.
- 30. Взаимодействие молекул. Уравнение состояния реального газа. Изотермы реального газа. Внутренняя энергия реального газа.

Электричество и постоянный ток

- 31. Закон Кулона. Применение закона Кулона в случае неточечных заряженных тел.
- 32. Электрическое поле. Напряженность электростатического поля. Принцип суперпозиции. Силовые линии.
- 33. Смещение (индукция) электростатического поля. Поток вектора смещения. Теорема Остроградского-Гаусса для электростатического поля. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженной сферы.
 - 34. Теорема Остроградского-Гаусса для электростатического поля.
- 35. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженной плоскости.
 - 36. Теорема Остроградского-Гаусса для электростатического поля.
- 37. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженного шара.
- 38. Работа сил электростатического поля по перемещению заряда. Циркуляция вектора напряженности электростатического поля.
 - 39. Потенциал электростатического поля. Эквипотенциальные поверхности.
- 40. Взаимосвязь напряженности и потенциала. Взаимное расположение силовых линий и эквипотенциальных поверхностей.
 - 41. Виды диэлектриков. Вектор поляризации. Диэлектрическая восприимчивость
- 42. Электрическое поле в диэлектрике. Диэлектрическая проницаемость и ее связь с восприимчивостью.
- 43. Проводники в электростатическом поле. Конденсаторы. Электроемкость плоского конденсатора.
 - 44. Энергия системы зарядов. Энергия электростатического поля.
- 45. Характеристики постоянного тока. Плотность тока. Закон Ома в дифференциальной форме. Сопротивление проводников
 - 46. Закон Ома для участка цепи и для полной цепи. Электродвижущая сила источника тока.
 - 47. Правила Кирхгофа для расчета электрических цепей.
 - 48. Работа и мощность тока. Закон Джоуля-Ленца.
 - 49. Классическая теория электропроводности.

Магнитное поле

- 50. Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-Лапласа для расчета индукции магнитного поля бесконечного, прямого проводника с током.
- 51. Закон полного тока (теорема о циркуляции вектора индукции магнитного поля). Применение закона полного тока для расчета поля бесконечно длинного соленоида. Поток вектора магнитной индукции. Теорема Остроградского-Гаусса для магнитного поля.

- 52. Сила Лоренца. Движение заряженной частицы в магнитном поле. Эффект Холла.
- 53. Сила Ампера. Взаимодействие параллельных токов.
- 54. Магнитные моменты электронов и атомов. Диамагнетизм. Магнетики.
- 55. Вектор намагниченности. Магнитная восприимчивость. Диа-, пара-магнетики. Магнитное поле в веществе. Магнитная проницаемость. Ферромагнетики.
 - 56. Явления электромагнитной индукции. Вывод закона Фарадея-Ленца. Правило Ленца.
- 57. Самоиндукция. Индуктивность. Индуктивность бесконечно длинного соленоида. Энергия магнитного поля. Объемная плотность энергии.
 - 58. Система уравнений Максвелла. Значение теории Максвелла.

Колебания

Примерный перечень вопросов к экзамену:

Компетенция ОПК-1:

3 семестр:

- 59. Гармонические колебания и их характеристики. Кинематика гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Энергия гармонических колебаний (механических и электрических).
- 60. Дифференциальное уравнение гармонических колебаний пружинного и физического маятников. Период колебаний этих маятников.
 - 61. Гармонические колебания в колебательном контуре. Формула Томсона.
- 62. Дифференциальное уравнение затухающих механических и электрических колебаний. Логарифмический декремент затухания.
- 63. Дифференциальное уравнение вынужденных механических колебаний и его решение. Резонансные кривые.
- 64. Переменный ток. Полное сопротивление цепи переменного тока. Последовательное и параллельное соединение.
- 65. Сложение колебаний одного направления одинаковой частоты. Векторные диаграммы. Сложение колебаний одного направления. Биения. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- 66. Волновые процессы. Продольные и поперечные волны. Уравнение бегущей волны. Волновое уравнение. Волновой пакет. Групповая скорость.

Волновая и квантовая оптика. Квантовая механика

- 67. Электромагнитные волны. Характеристики световых волн. Интенсивность световой волны.
- 68. Когерентность световых волн. Интерференция света от двух источников. Интерференционные условия для разности фаз и разности хода.
 - 69. Методы наблюдения интерференции света (бипризма Френеля, опыт Юнга)
- 70. Интерференция в тонких пленках. Вывод формулы для оптической разности хода лучей в тонкой пленке.
- 71. Виды дифракции. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция света на круглом отверстии, от круглого диска, на узкой щели, на дифракционной решетке.
- 72. Дифракция рентгеновских лучей. Условие Вульфа-Брэггов. Применение дифракции рентгеновского излучения.
- 73. Естественный и поляризованный свет. Закон Брюстера. Закон Малюса. Поляризация света при двойном лучепреломлении. Дихроизм. Призма Николя. Оптическая активность вещества.
- 74. Характеристики теплового излучения. Закон Кирхгофа. Закон Стефана- Больцмана. Закон смещения Вина. Закон Рэлея –Джинса. Ультрафиолетовая катастрофа. Формула Планка. Законы теплового излучения и их получение из формулы Планка.
- 75. Законы фотоэффекта. Вольтамперная характеристика фототока. Задерживающий потенциал. Ток насыщения. Работа выхода. Уравнение Эйнштейна для фотоэффекта. Красная граница фотоэффекта.
 - 76. Фотоны. Давление света . Эффект Комптона. Корпускулярно-волновой дуализм света.
 - 77. Опыт Резерфорда. Постулаты Бора.
- 78. Корпускулярно-волновой дуализм вещества. Длина волны де-Бройля. Экспериментальные доказательства волновых свойств частиц.
- 79. Соотношение неопределенностей Гейзенберга. Вывод соотношения неопределенностей на основе волновых свойств частиц.
- 80. Уравнение Шредингера. Физический смысл пси-функции. Решение уравнения Шредингера для бесконечно-глубокой потенциальной ямы.
 - 81. Потенциальный барьер. Туннельный эффект. Гармонический осциллятор.
- 82. Закономерности в атомных спектрах. Формула Бальмера. Боровская модель атома водорода. Достоинства и недостатки теории Бора.
 - 83. Квантовомеханическая модель атома водорода. Квантовые числа. Вырожденные состояния.

Правила отбора.

- 84. Спонтанное и вынужденное излучение. Лазеры.
- 85. Энергетические зоны в кристаллах. Структура энергетических зон металлов, полупроводников и диэлектриков. Полупроводники (собственные и примесные). Структура энергетических зон примесных и собственных полупроводников.

3. Тестовые задания. Оценка по результатам тестирования.

Залание 1 (ОПК-1)

Выберите правильный вариант ответа.

Условие задания: Последовательность в порядке возрастания радиуса

- 1: электрон
- 2: ядро атома
- 3: атом
- 4: молекула

Задание 2 (ОПК-1)

Последовательность в порядке возрастания длительности

- 1: нс
- 2: мкс
- 3: мс
- 4: c
- 5: мин
- 6: час

Задание 3 (ОПК-1)

На рисунке вектор мгновенной скорости точки при ее движении по кривой АВ это:

- 1. Вектор 1
- 2. Вектор 2
- 3. Вектор 3
- 4. Вектор 4
- 5. нет правильного ответа

Задание 4 (ОПК-1)

Указать правильный ответ

Цикл Карно:

- 1. Состоит из двух изотерм и двух изобар
- 2. Состоит из двух изохор и двух изобар
- 3. Состоит из двух изотерм и двух адиабат
- 4. Это круговой процесс

Задание 5 (ОПК-1)

Последовательность в порядке возрастания длительности

Последовательность в порядке возрастания

- 1: мПа
- 2: Па
- 3: кПа
- 4: МПа

Задание 6 (ОПК-1)

Указать правильный ответ

Цикл Карно:

- 1. Состоит из двух изотерм и двух изобар
- 2. Состоит из двух изохор и двух изобар
- 3. Состоит из двух изотерм и двух адиабат
- 4. Это круговой процесс

Задание 7 (ОПК-1)

Последовательность в порядке возрастания твердости материала

- 1: пар
- 2: жидкость

- 3: сталь
- 4: алмаз
- 5: нанокомпозитные металлические покрытия

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Соответствие между бальной системой и системой оценивания по результатам тестирования устанавливается посредством следующей таблицы:

Объект	Показатели	Оценка	Уровень
оценки	оценивания		результатов
	результатов обучения		обучения
Обучающийся	60 баллов и менее	«Неудовлетворительно»	Низкий уровень
	74 – 61 баллов	«Удовлетворительно»	Пороговый уровень
	84 – 75 баллов	«Хорошо»	Повышенный уровень
	100 – 85 баллов	«Отлично»	Высокий уровень

4. Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета, курсового проектирования.

Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета

Элементы оценивания		Содержание п	ікалы оценивания	
	Неудовлетворительн	Удовлетворитель	Хорошо	Отлично
	Не зачтено	Зачтено	Зачтено	Зачтено
Соответствие ответов формулировкам вопросов (заданий)	Полное несоответствие по всем вопросам.	Значительные погрешности.	Незначительные погрешности.	Полное соответствие.
Структура, последовательность и логика ответа. Умение четко, понятно, грамотно и свободно излагать свои мысли	Полное несоответствие критерию.	Значительное несоответствие критерию.	Незначительное несоответствие критерию.	Соответствие критерию при ответе на все вопросы.
Знание нормативных, правовых документов и специальной литературы	Полное незнание нормативной и правовой базы и специальной литературы	Имеют место существенные упущения (незнание большей части из документов и специальной литературы по названию, содержанию и т.д.).	Имеют место несущественные упущения и незнание отдельных (единичных) работ из числа обязательной литературы.	Полное соответствие данному критерию ответов на все вопросы.
Умение увязывать теорию с практикой, в том числе в области профессиональной работы	Умение связать теорию с практикой работы не проявляется.	Умение связать вопросы теории и практики проявляется редко.	Умение связать вопросы теории и практики в основном проявляется.	Полное соответствие данному критерию. Способность интегрировать знания и привлекать сведения из различных научных сфер.

Качество ответов на	На все	Ответы на	. Даны неполные	Даны верные ответы
дополнительные	дополнительные	большую часть	ответы на	на все
вопросы	вопросы	дополнительных	дополнительные	дополнительные
	преподавателя даны	вопросов	вопросы	вопросы
	неверные ответы.	преподавателя	преподавателя.	преподавателя.
		даны неверно.	2. Дан один	
			неверный ответ на	
			дополнительные	
			вопросы	
			преподавателя.	

Примечание: итоговая оценка формируется как средняя арифметическая результатов элементов оценивания.